Clustering of Signals Using Incomplete Independent Component Analysis

نویسندگان

  • Ingo R. Keck
  • Elmar Wolfgang Lang
  • Salua Nassabay
  • Carlos García Puntonet
چکیده

In this paper we propose a new algorithm for the clustering of signals using incomplete independent component analysis (ICA). In the first step we apply the ICA to the dataset without dimension reduction, in the second step we reduce the dimension of the data to find clusters of independent components that are similar in their entries in the mixture matrix found by the ICA. We demonstrate that our algorithm out-performs k-means in the case of toy data and works well with a real world fMRI example, thus allowing a closer look the way how different parts of the brain work together.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Fuzzy C-means Algorithm for Clustering Fuzzy Data and Its Application in Clustering Incomplete Data

The fuzzy c-means clustering algorithm is a useful tool for clustering; but it is convenient only for crisp complete data. In this article, an enhancement of the algorithm is proposed which is suitable for clustering trapezoidal fuzzy data. A linear ranking function is used to define a distance for trapezoidal fuzzy data. Then, as an application, a method based on the proposed algorithm is pres...

متن کامل

استفاده از نگرش تحلیل مؤلفه‌های اصلی برای وزن‌دهی ویژگی‌های آماری، اقلیمی و جغرافیایی حداکثر بارندگی 24 ساعته و تحلیل مکانی خوشه‌بندی (مطالعه موردی: حوضه دریاچه ارومیه)

Regionalization is one of the useful tools for carrying out effective analyses in regions lacking data or with having only incomplete data. One of the regionalization methods widely used in the hydrological studies is the clustering approach. Moreover, another effective factor on clustering is the degree of importance and participation level for each of these attributes. In this study, it was t...

متن کامل

A review on EEG based brain computer interface systems feature extraction methods

The brain – computer interface (BCI) provides a communicational channel between human and machine. Most of these systems are based on brain activities. Brain Computer-Interfacing is a methodology that provides a way for communication with the outside environment using the brain thoughts. The success of this methodology depends on the selection of methods to process the brain signals in each pha...

متن کامل

A review on EEG based brain computer interface systems feature extraction methods

The brain – computer interface (BCI) provides a communicational channel between human and machine. Most of these systems are based on brain activities. Brain Computer-Interfacing is a methodology that provides a way for communication with the outside environment using the brain thoughts. The success of this methodology depends on the selection of methods to process the brain signals in each pha...

متن کامل

A New Approach to Clustering and Object Detection with Independent Component Analysis

It has previously been suggested that the visual cortex performs a data analysis similar to independent component analysis (ICA). Following this idea we show that an incomplete ICA, applied after filtering, can be used to detect objects in natural scenes. Based on this we show that an incomplete ICA can be used to efficiently cluster independent components. We further apply this algorithm to to...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005